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Abstract. Similarity is well-known to be a core concept of human cog-
nition, e.g., in categorization and learning. Therefore, expressions of sim-
ilarity in natural language are of special interest: How to account for their
meaning including the results on similarity in Cognitive Science and Arti-
ficial Intelligence without abandoning referential semantics? In this paper
we will lay out a framework connecting referential semantics to concep-
tual structures by generalizing the notion of measure functions known
in degree semantics from the one-dimensional to the many-dimensional
case mapping individuals to points in multi-dimensional attribute spaces.
Similarity is then spelled out as indistinguishability with respect to a
given set of attributes.

1 Introduction

Similarity is well-known to be basic in human cognition, e.g., in categorization
and learning processes, and has given rise to a wide range of approaches in
Cognitive Science and Artificial Intelligence in which the relation of similarity
is captured in terms of, e.g., distance or feature bundles. In natural languages
semantics linguistic expressions of similarity are of special interest: How to ac-
count for their meaning making use of the results in Cognitive Science and AI
without abandoning the idea of referential semantics?

Following Umbach & Gust (2014) linguistic expressions of similarity include,
in addition to adjectives like similar and verbs like resemble, demonstratives
of manner, quality and/or degree like German so, Polish tak and English such.
These demonstratives modify (some or all of) verbal and nominal and degree
expressions, posing the problem of how to reconcile their demonstrative charac-
teristics with their modifying capacity. Umbach & Gust argue that these demon-
stratives express similarity to the target of the demonstration gesture, and that
the emerging similarity class constitutes an ad-hoc generated kind.

Similarity is spelled out with the help of multi-dimensional attribute spaces
integrated into referential semantics by generalized measure functions mapping
individuals to points in these spaces, generalizing the notion of measure functions
familiar in degree semantics (cf. Kennedy 1999) from the one-dimensional to the
many-dimensional case. Similarity is defined by the notion of indiscernability
known in rough set theory (cf. Pawlak 1998) establishing an equivalence relation.
Compared to Gärdenfors’ conceptual spaces (Gärdenfors 2000), this approach
employs a qualitative notion of similarity (as suggested by Tversky 1977) instead
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of a geometric one. More importantly, while Gärdenfors’ conceptual spaces are
’stand alone’ systems, the approach presented here integrates a conceptual level
of representation into referential semantics, and it does that in a way that has
already been paved by degree semantics.

The focus of the current paper is on the formal details of this approach,
which have only briefly been touched upon in Umbach & Gust (2014). The
notions of attribute spaces, measure functions, representation, indiscernability
and granularity will be laid out here in detail. Similarity will be defined as
a categorical predicate sim, with a comparative relation more_sim based on
the categorical predicate. This notion of similarity will be compared to that
in Tversky (1977) which is relational in nature. Section 2 will provide a brief
summary of the linguistic data; in section 3 the basic definitions will be given;
in section 4 similarity will be defined, and in section 5 this notion of similarity
will be compared to Tversky’s notion of similarity.

This paper grew out of a collaboration of Artificial Intelligence and Natu-
ral Language Semantics and includes both perspectives. The AI background is
in knowledge representation and ontologies, feature extraction, and reasoning
with examples, cf. Randall (1993). The semantic background is in referential se-
mantics, in particular demonstratives, degree expressions and generics (Kaplan
1989, Kennedy 1999, Carlson 1980). Rather than trying to conceal the different
perspectives we will make them explicit where advisable.

2 Demonstratives of manner, quality and degree

The approach in Umbach & Gust (2014) starts from German so (’such’/’like
this’). It is one of a class of demonstratives found across languages that serve
as modifiers of quality and/or manner and/or degree, including also, e.g., Polish
tak and English such. Carlson (1980) proposed an analysis of English such as
directly referring to a kind. This analysis was adopted by Anderson & Morzy-
cki (2015) for Polish tak, which behaves analogous to German so in modifying
nominal, verbal and also adjectival expressions, extending the notion of kinds
to events and also degrees. Umbach & Gust (2014) argue that a directly kind-
referring approach has a number of shortcomings and suggest an analysis based
on similarity. While in the case of demonstratives like this the referent of the
demonstrative phrase and the target of the demonstration gesture are identical
– this is an in-build feature of the Kaplanian theory of demonstratives – in the
case of manner/quality/degree demonstratives the referent and the target of the
demonstration are similar (with respect to relevant features).

Consider the examples in (1). In (a), Anna’s manner of dancing is charac-
terized as being similar in certain respects to the dancing event the speaker is
pointing at. In (b), Anna’s cup is characterized as being similar to the cup the
speaker is pointing at. Finally, in (c) Anna’s height is characterized as being sim-
ilar to the height of the person the speaker is pointing at. In all of these cases,
by using the demonstrative so a similarity class is created based on the target
of the demonstration. In the case of nouns and verbs the similarity class clearly
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exhibits kind-like properties and should be considered as an ad-hoc generated
kind, e.g., in (1a) there is an ad-hoc generated sub-kind of dancing events similar
to the dancing pointed at, and in (1b) there is an ad-hoc generated sub-kind of
cups similar to the mug pointed at. In the case of adjectives, as in (1c), it is an
open issue whether the similarity class created by the use of the demonstrative
should be considered as a genuine kind (see Anderson & Morzycki and Umbach
& Gust; we will not go into this issue here.)

(1) a. (speaker pointing to someone dancing):
So tanzt Anna auch.
’Anna dances like this, too.’

b. (speaker pointing to a cup):
So eine Tasse hat Anna auch.
’Anna has such a cup / a cup like this, too.’

c. (speaker pointing to a person):
So groß ist Anna auch.
’Anna is this tall, too.’

The most urgent question when dealing with similarity is that of the relevant
respects, or features, of similarity. Without fixing relevant respects the notion
of similarity would be trivial (Goodman 1972). In the case of adjectives like tall
there is only one dimension, which is fixed by the adjective’s lexical meaning
— in the case of tall the feature of similarity is height. In the case of multi-
dimensional adjectives like healthy and beautiful, as well as nouns and verbs,
features of similarity have to be provided by the context. There are, however,
constraints on which features qualify as licit in similarity comparison. Consider
the anaphoric use of so in (2): so ein Auto can easily be understood as denoting
a Japanese car but not as denoting a new car. These constraints are subject of
an experimental study presented in Umbach (submitted) and are traced back to
the idea of principled (vs. mere statistical) connections between properties and
kinds discussed in the literature on generics (see Carlson 2010).

(2) a. Anna hat ein japanisches Auto. Berta hat auch so ein Auto
(nämlich ein japanisches Auto).

b. Anna hat ein neues Auto. Berta hat auch so ein Auto
(*nämlich ein neues Auto).
’Anna has a Japanese car / a new car. Berta has such a car, too.’

One more issue when studying expressions of similarity in natural languages
is the difference between demonstratives, like German so and English such, and
adjectives, like German ähnlich and English similar. Although the two types
of similarity expressions appear equivalent in meaning at first sight, there are
fundamental differences. One of these is their behavior in additive contexts as
in (3). The question-under-discussion in (3) (‘Which cars do Otto and Anna
drive?’) has been partially answered by the preceding sentence – Otto drives a
Mercedes Benz. Adding another Mercedes Benz driver should require an additive
particle, which is in fact obligatory when using the demonstrative but is highly
redundant when using the adjective.
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(3) (Otto drives a Mercedes Benz – what about Anna?)
a. Anna fährt auch so ein Auto.
b. ??Anna fährt auch ein ähnliches Auto.

‘Anna drives such a car / a similar car, too.’
On the basis of this and other observations it is argued in Umbach (2014) that
adjectives expressing similarity differ from demonstratives expressing similarity
in carrying an in-built distinctiveness requirement on their arguments, which is
the reason why the additive particle is not licensed in (3b). This entails that the
similarity relation expressed by adjectives is irreflexive while that expressed by
demonstratives is reflexive.

Similarity is, from the point of view of referential semantics, a simple predi-
cate – so ein Auto / such a car denote an element of a set of cars similar to the
target of the demonstration or antecedent (see the examples in (4,5) in section
4). Since this set exhibits kind-like properties, it is justly considered as an ad-hoc
created sub-kind, for example, an ad-hoc created sub-kind of cars (cf. Umbach
submitted). It would be unsatisfactory, however, if similarity were just an ar-
bitrary predicate. The challenge posed by similarity is to gain insight into the
mechanism and the constraints of this relation (and thereby into the mechanism
and constraints of ad-hoc kind formation). For this reason, the similarity rela-
tion is spelled out in multi-dimensional attribute spaces inspired by knowledge
representation techniques familiar in Artificial Intelligence.

In the next section, multi-dimensional attribute spaces, families of contexts,
predicates on attribute spaces and convex closures thereof are defined. This is
the machinery used in section 4 to implement a context-sensitive predicate sim
and, based on that, a comparative similarity relation moresim relation. This is
compared in section 5 to Tversky’s implementation of similarity.

3 Multi-dimensional attribute spaces

The basic idea of the framework presented in this paper is to have a referential
semantics for natural language expressions where predicates talk about entities
in the world, and a representational layer where predicates talk about abstract
entities like numbers and symbols specifying attributes. Entities of the world
are related to these abstract entities by processes of measurement or feature
extraction or perception etc.. The representational layer facilitates comparing
entities in the world with respect to their attributes and, in particular, determine
whether they are similar with respect to certain attributes.

Representation by attributes is familiar in AI in, e.g., knowledge representa-
tion. Multi-dimensional attribute spaces in knowledge representation make use
of attributes (i.e. dimensions) with all sorts of values, for example numbers and
symbols. Points in these spaces correspond to lists of attribute-value pairs. A
parallel, even if simpler conception is found in referential semantics, more pre-
cisely, in degree semantics where gradable adjectives are interpreted by measure
functions mapping individuals to degrees, that is, points on a dimension with
metric values. Attribute spaces can be seen as a generalization of dimensions
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in degree semantics involving more than one dimension and allowing for val-
ues other than metrical ones. Likewise, mappings from individuals to points in
attribute spaces can be seen as a generalization of measure functions from the
one-dimensional to the many-dimensional case. From this point of view, making
use of multi-dimensional attribute spaces in referential semantics is not a radical
novelty but rather a generalization of the broadly accepted idea of degrees and
measure functions.

The basic components of the framework presented in this paper are (i) do-
mains , (ii) attribute spaces and measure functions and (iii) predicate systems
over attribute spaces. They will be defined subsequently.

3.1 Domains and representations

We define a domain as a subset of the universe together with a set of predicates
and non-overlapping sets of positive and negative examples for each predicate.
We define families of contexts as sets of domains with related predicates that
may differ, however, in their positive and negative examples. Examples must
behave consistently within a family of contexts, that is, they must not change
their roles.1

Definition 1. Domain
A domain is a quadruple D = 〈D, .+, .−, P 〉 with:
– D a set representing the domain,
– P = {p1, ..., pn} a set or family of predicates over D,
– .+ : {p1, ..., pn} → P(D) a function which assigns positive examples to each

predicate,
– .− : {p1, ..., pn} → P(D) a function which assigns negative examples to each

predicate,
– p+i , p

−
i ⊆ D .

– p+i ∩ p
−
i = ∅

Definition 2. Family of contexts
A family of contexts C(P ) = {〈Dk, .

+k , .−k , Pk〉|k = 1, 2, ....} evaluates P if

– Pk ⊆ P
– for any two contexts Ci, Cj ∈ C(P ) and for all p ∈ Pi ∩ Pj the following

conditions hold2

1 A side remark for semanticists: While in a classical (two-valued) truth-conditional
semantics it is presumed that an individual is either p or ¬p, from the point of view of
knowledge representation there may be individuals for which this is not (yet) known.
This is the reason why the set of positive examples p+ need not cover the extension of
p (and p− need not cover ¬p). The idea is that with increase of information the range
of indeterminateness decreases. This behavior can be accounted for in logics with a
notion of underdefinedness (see Muskens 1995). We will, however, not go into this
issue here but rather assume that the underlying logic is classical and representations
are (possibly incomplete) approximations.

2 This is a slightly different formalization of NR, UD, and DD in (van Rooij 2011).
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• elements of p+ and p− cannot change roles in a different context:
p+i × p−i ∩ p−j × p+j = ∅

• discriminative power: p+i × p−i ∩Dj ×Dj 6= ∅ → p+j × p−j 6= ∅
(Predicates discriminating elements in one context should be able to dis-
criminate elements in another context.) 3

Attribute spaces are common structures for representation. They generalize
vector space approaches in allowing heterogeneous dimensions equipped with
value sets of different scales (nominal, ordinal, interval, ratio), where value sets
may themselves be attribute spaces (the values being points in such spaces).

An attribute space F is given by a set of attributes A = {a1...an}, such that
for each ai in A there is a set of values Vai

. Points in an attribute space are in
Va1
× ... × Van

. A representation includes an attribute space F , a (generalized)
measure function µ mapping elements of a domain into an attribute space and a
set of predicates p∗ talking about points in the attribute space. These predicates
serve as approximations 4 of the predicates P of the domain and will be detailed
in section 3.2.

Definition 3. Representation
A representation F = 〈F, µ, .∗,D〉 of a domain D = 〈D, .+, .−, P 〉 is given by
– an attribute space F ,
– a measure function µ : D → F ,
– .∗ : P → ΩF 5

together with the consistency conditions
– ∀x ∈ p+ : p∗(µ(x)) = true
– ∀x ∈ p− : p∗(µ(x)) = false

for all p in P .

From this we get µ(p+i ) ∩ µ(p
−
i ) = ∅.

3.2 Predicates on attribute spaces

Attribute spaces are familiar methods of representation in AI and also in some
branches of natural language semantics, e.g., in frame-based approaches (Barcalou
1992). What distinguishes attribute spaces and representations as proposed in
this paper is the idea of predicates on attribute spaces. On the worldy side, a
domain includes a set of relevant predicates p ∈ P . According to the notion of
a representation in this paper these predicates have counterparts on the repre-
sentational side, namely the predicates p∗ ∈ .∗(P ) = P ∗. Counterpart predicates
3 If a predicate bike discriminates between bikes and trikes in a context containing
only bikes and trikes it should at least discriminate between bikes including trikes
and cars in a context containing bikes, trikes and cars.

4 More precisely: p∗ ◦ µ approximates p
5 where ΩF is the set of characteristic functions in F
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Fig. 1. Domains and Representaions

are required to be consistent with their originals; more precisely, they have to
agree in truth value with the set of positive / negative exemplars of the original
predicate (see definition 3). Moreover, counterpart predicates will be assumed
to be convex, that is, true of all points in the convex closure of (the images of)
the positive exemplars (see below).

Reasons for furnishing attribute spaces with predicates are, (i) they facilitate
a straightforward definition of indiscernability in the sense of rough set theory
(Pawlak 1998), that is, a relation establishing classes of points which count as
equivalent (in a specific context, with respect to specific inferences). The indis-
cernability relation provides attribute spaces with a grid of granularity, allowing
comparison of attribute spaces of different granularity which are identical oth-
erwise. Indiscernability and granularity will be exploited to define a categorical
and a comparative notion of similarity in the next section.6

From the point of view of AI and knowledge representation there is another
reason to have predicates on attribute spaces. If you assume that elements in
a domain D are not directly accessible and instead require some sort of feature
extraction or perception or measuring processes, then reasoning is possible only
with the results of such processes, that is, on the level of representations.

Convex closures on attribute spaces It has been argued by Gärdenfors
(2000) that natural properties correspond to convex regions in conceptual spaces,
6 It has been objected that in order to account for different granularity of representa-
tions one could use different sets of attributes and values, that is, different attribute
spaces. This would require, however, a way to compare granularity directly on at-
tribute spaces, which would be less intuitive and in the end close to what we suggest.
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convexity being required by cognitive economy in learning and memory. Since
Gärdenfors’ conceptual spaces are metrical there is a notion of betweenness fa-
cilitating a definition of convexity such that a region is convex if for all points
x and y in that region any point z between x and y is also in that region. At-
tribute spaces as specified in this paper do not have a metrical between relation.
Convexity in these spaces will be defined by convex closure operators.

Definition 4. Closure operator on attribute spaces
An operator cl is a closure operator on an attribute space F iff

– cl : P(F )→ P(F )
– For all X ⊆ F
• X ⊆ cl(X)
• cl(cl(X)) = cl(X)

– cl(∅) = ∅

Definition 5. Convex closure
A closure is convex if the anti-exchange property holds:

y, z /∈ cl(X) ∧ y 6= z ∧ z ∈ cl(X ∪ {y})→ y /∈ cl(X ∪ {z})

We assume, as does Gärdenfors, that predicates in a domain are well-behaved in
the sense that they cover convex regions, that is in our case, they correspond to
convex subsets of an attribute space. More precisely, predicates p∗ on attribute
spaces are required to be true for every point in the convex closure of the predi-
cate’s positive examples when mapped to the attribute space. This is, we expect
representations to be strongly consistent.

Definition 6. Strong consistency
A representation F = 〈〈F, cl〉, µ, .∗,D〉 of a domain D = 〈D, .+, .−, P 〉 is strongly
consistent if ∀pi ∈ P : p∗i (cl(µ(p

+
i ))) = {true}7

We can make this even stronger by stipulating that the p∗i itself have convex
extensions, which implies strong consistency.

Above we defined a number of constraints on closure operators. That does
not, however, answer the question of how to define a particular closure operator.
One way of doing that is by exploiting a partial order. On a (partially) ordered
set 〈D,≤〉 we can define closure operators in a natural way:

Definition 7. Closure operations on partial orders
For A ⊆ D we define:

left closure: cl←(A) = {x ∈ D|∃y ∈ A : x ≤ y}
right closure: cl→(A) = {x ∈ D|∃y ∈ A : y ≤ x}
closure: cl(A) = {x ∈ D|∃y, z ∈ A : y ≤ x ≤ z}

7 We make use of the convention that a function f applied to set of arguments refers
to the set of images: f(X) = {f(x)|x ∈ X}.
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For all three constructions the anti-exchange property holds, so all the resulting
sets are convex. Thus, if F is (partially) ordered, we can easily define a convex
closure operator. In order to emphasize the aspect that an attribute space F
is equipped with a closure operator cl, we add it to the representation: F =
〈〈F, cl〉, µ, .∗,D〉 of a domain D = 〈D, .+, .−, P 〉.

Predicate systems Predicates defined on attribute spaces classify points in
such spaces facilitating different levels of granularity of representation. Given a
set of base predicates B (e.g. small, medium, big) over a feature space F we
define a set of predicates B̃ inductively (analogous to defining a topology relative
to a base):
– B ⊆ B̃
– X ∈ B̃ ∧ Y ∈ B̃ → X ∩ Y ∈ B̃
– X ∈ B̃ ∧ Y ∈ B̃ → cl(X ∪ Y ) ∈ B̃

If F is (partially) ordered we get additionally
– X ∈ B̃ → cl→(X) ∈ B̃
– X ∈ B̃ → cl←(X) ∈ B̃

We assume that the elements of B are convex (cl(X) = X for X ∈ B) and we
say that B̃ is generated by B and cl. We can view .̃ as operator generating
the predicate system for a give base. A good candidate for B is {p∗1, ..., p∗n}. For
a representation F = 〈〈F, cl〉, µ, .∗, 〈D, .+, .−, P 〉〉, P̃ ∗ is the predicate system
generated by P ∗ = {p∗1, ..., p∗n} and cl.

Indiscernability Two elements in a domain D are indistinguishable on the rep-
resentational level if they are mapped by µ onto the same point of the attribute
space. But even if they are mapped to different points, they may nevertheless be
indistinguishable in yielding the same inferences. This is the case if they agree
on all predicates. We borrow the term indiscernable from Rough Set Theory:

Definition 8. Indiscernable
Given a representation F = 〈F, µ, .∗, 〈D, .+, .−, P 〉〉 we define:

x ∼F y ≡ ∀q ∈ P̃ ∗ : q(x)↔ q(y)

Granularity For two representations F and F ′ sharing the same attribute
space F we can ask whether one is more fine grained than the other, that is,
whether two entities can be distinguished in one representation but not in the
other one. Since indiscernability of entities in a representation depends on the set
of predicates P provided by the domain, granularity of representations depends
on the set of predicates P , too.

Definition 9. Family of representations evaluating a system of predicates
Given a family of contexts C(P ) = {〈Dk, .

+k , .−k , Pk〉|k = 1, 2, ....} evaluating a
system of predicates P we get the corresponding family of representations
FC(P ) = {〈F, µ, .∗k , 〈Dk, .

+k , .−k , Pk〉〉|k = 1, 2, ....}
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On FC(P ) we can define a partial order:

Definition 10. Coarser representation
Given two representations
Fi = 〈F, µ, .∗i, 〈Di, .

+i, .−i, Pi〉〉 ∈ FC(P ) and
Fj = 〈F, µ, .∗j , 〈Dj , .

+j , .−j , Pj〉〉 ∈ FC(P )
we define:
Fj ≥ Fi iff Pj ⊆ Pi ∧ ∀x, y ∈ F : x ∼Fi y → x ∼Fj y

We say Fj is coarser than Fi (Fj > Fi) iff Fj ≥ Fi but not Fj ≤ Fi.
This completes the formal machinery required for the definition of similarity

in the next section.

4 Defining Similarity

4.1 Similar

We started out from the analysis of demonstratives of manner, quality and de-
gree, in particular German so, in Umbach & Gust (2014). It was argued that
these demonstratives express similarity to the target of the demonstration ges-
ture, and that the emerging similarity class constitutes an ad-hoc generated
kind. This suggests that the similarity relation expressed by the demonstratives
is adequately captured by the notion of indiscernability as defined above.

Definition 11. Similar
∀x, y,∈ D : sim(x, y,F) ≡ µ(x) ∼F µ(y)

Definition 11 entails that the notion of similarity expressed by the demonstratives
is an equivalence relation (see also section 5).

The sim predicate is used in Umbach & Gust (2014) for a compositional
interpretation of the demonstrative so. When modifying nominals so occurs in
an ad-determiner position and is thus combined with the indefinite determiner,
see (4).

In the nominal case (and in the verbal case) features of comparison have to
be inferred from the context of the utterance – so eine Tasse (’such a cup’) may
denote cups similar in form and/or color and/or design etc. – whereas in the
adjectival case there is only one feature of comparison, which is fixed by the
lexical meaning of the adjective – so groß (’this tall’) can only mean similar in
height.

We assume that features of comparison provide attributes spanning the at-
tribute space in a representation F . We write F(f) to indicate a representation
with a single linguistically fixed attribute f . The variable t in (4,5) is a free
variable denoting the target of the demonstration gesture.

(4) so eine Tasse (’such a cup’)
[[so]] = λD.λP.D(λx.sim(x, t,F) ∧ P (x))
[[so ein]] = λP.λQ.∃x.sim(x, t,F) ∧ P (x) ∧Q(x)
[[so eine Tasse]] = λQ.∃x.sim(x, t,F) ∧ cup(x) ∧Q(x)
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(5) so groß (’this tall’)
[[so]] = λf.λx.sim(x, t,F(f))
[[so groß]] = λx.sim(x, t,F(height))

The predicate sim, which is a simple modifier of determiners and degree expres-
sions in (4,5), receives its explanatory power by being defined as indiscernability
in attribute spaces.

4.2 More Similar

Similarity as expressed by demonstratives is clearly not gradable – there is no
way of saying that something is more such a thing than something else. Thus
the sim predicate defined above is appropriate for the semantics of, e.g., English
such and German so. In contrast, similarity as expressed by adjectives is grad-
able, cf. English more similar and German ähnlicher. We will provide a gradable
notion of similarity in the way of the vague predicate analysis of Klein (1980)
such that the comparative is based on the positive. We define a four-place pred-
icate more_sim(x, y, z, u,FC(P )) with the help of representations of different
granularity in a family of representations such that x is more similar to z than
y to u, if there is a representation F ′ identifying x and z while distinguishing y
and u. Any F ′′ identifying y and u must not discriminate x and z.

Definition 12. More similar
Given a family of representations FC(P ), x is more similar to z than y to u,
more_sim(x, y, z, u,FC(P )) iff
∃F ′ ∈ FC(P ) : sim(x, z,F ′) ∧ ¬sim(y, u,F ′)
∧ ∀F ′′ ∈ FC(P ) : sim(y, u,F ′′)→ sim(x, z,F ′′)

The 4-place predicate moresim provides an interpretation for natural language
comparatives as in Anna resembles her mother more than Berta resembles her
father. Definition of a 3-place version is straightforward:

more_sim3(x, y, z,FC(P )) iff more_sim(x, y, z, z,FC(P )).
Another motivation for a comparative version of similarity stems from multi-
dimensional gradable adjectives like healthy and beautiful which are difficult to
handle in standard degree semantics. One-dimensional adjectives like tall are
interpreted in degree semantics as measure functions mapping individuals to de-
grees (Kennedy 1999). The positive form (as in A is tall) is assumed to include
a context-dependent cut-off degree for individuals to count as tall in the con-
text/comparison class. For many-dimensional adjectives, however, it is unclear
how to define a cut-off. Sassoon (2013) suggests quantification over dimensions
such that, e.g., healthy means healthy in all relevant dimensions while leaving
the question open of how to define the comparative.

Umbach (in press) makes use of similarity in multi-dimensional spaces when
interpreting evaluative predicates like beautiful. Since evaluative predicates don’t
have a linguistically fixed denotation there is no independently given set of posi-
tive exemplars beautiful+. Whether something is beautiful or not is not a matter
of fact but rather a matter of convention, that is, of negotiation of criteria. Ne-
gotiating criteria can be seen as determining a ’prototype’ which is, however,
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not a point but rather a predicate on points in an attribute space. Suppose
proto_beautiful is the class of points in F corresponding to the criteria for
something to count as beautiful, that is, proto_beautiful plays the role of a
cut-off. The counterpart predicate beautiful∗ then has to be the convex closure
of proto_beautiful. An individual can now be said to count as beautiful in a
domain D and a representation F iff it is indiscernable from the elements of
beautiful∗, that is, the closure of proto_beautiful (where the domain serves as
comparison class).
∀x ∈ D: x is beautiful in F iff
beautiful∗(µ(x)) in F , that is, cl(proto_beautiful)(µ(x)) in F .

The comparative of multi-dimensional adjectives is interpreted with the help of
the more_sim relation.8

∀x, y ∈ D: x is more beautiful than y in FC(P ) iff
more_sim3(x, y, cl(proto_beautiful),FC(P )) 9

5 Comparison to Tversky’s account of similarity

Twersky’s contrast model of similarity was developed as an alternative to the at
that time dominant geometric models in which (dis)similarity of two objects is
represented by distance. Tversky started from empirical findings that appeared
incompatible with the axioms of a metric distance function. He claimed that
" ... the assessment of similarity between stimuli may better be described as
a comparison of features rather than as the computation of metric distance
between points." (p. 328), and proposed to assess similarity making use of sets
of features (binary, nominal, ordinal, cardinal). Similarity of two objects a and
b is measured by a matching function F accounting for communalities of and
differences between their feature representations A and B:

sim(a, b) = F (A ∩B,A−B,B −A).
The result of the matching function corresponds to a value on an interval scale
S which makes it possible to compare the similarity of two objects to that of
two other objects: sim(a, b) ≤ sim(c, d) iff S(a, b) ≤ S(c, d).10
From the point of view of the semantics of gradable adjectives, Tversky’s account
of similarity is in the spirit of degree semantics where the comparative is prior to
the positive. Tversky’s notion of similarity maps pairs of individuals to degrees

8 This corresponds to a vague predicate interpretation of multi-dimensional adjectives.
It’s an open question, however, whether one-dimensional adjectives like tall should
be interpreted in this way, too. One of our future issues is to exploit a two-way
approach: While the comparative of adjectives relating to a single metrical scale
makes use of that scale (in a degree semantics fashion), the comparative of multi-
dimensional adjectives involves similarity to prototypes, as sketched above.

9 We use more_sim3 also with arguments from F . This is unproblematic because µ
mediates between the two levels.

10 where S computes the values of a model based on the weighted sums over common
and distinctive features, which means, there exist f, θ, α, β with S(a, b) = θf(A ∩
B)− αf(A−B)− βf(B −A).
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on a scale of similarity thereby facilitating comparison — a and b are more
similar to each other than c and d. Positive judgments, as in a and b are similar,
are not considered. In contrast to Tversky’s account, the notion of similarity
developed in this paper is in the spirit of the vague predicate analyses starting
from the positive form and defining the comparative ’on top’.

Tversky started from empirical findings which seem incompatible with the
axioms of a metric distance function, i.e. minimality, symmetry and triangle
inequality. Minimality appears problematic if identification probability is inter-
preted as a measure of similarity because identical stimuli are not always iden-
tified by subjects as being identical. Triangle inequality is hardly compelling,
following Tversky, in view of cases involving different features. For example, Ja-
maica is similar to Cuba (with respect to geographical proximity) and Kuba is
similar to Russia (with respect to political affinity) but Jamaica and Russia are
not similar at all. Finally, symmetry is apparently false considering experimental
results showing that the judged similarity of North Korea to Red China exceeds
the judged similarity of Red China to North Korea.

In this paper, similarity is viewed as a means of classification, that is, a
relation establishing classes, or kinds, of individuals. From a classification per-
spective, similarity has to be reflexive, symmetric and transitive. Concerning
reflexivity, Umbach (2014) shows that the interpretation of demonstratives like
German so and English such requires reflexivity while the interpretation of ad-
jectives expressing similarity, like German ähnlich and English similar, excludes
reflexives pairs. Being irreflexive explains why adjectival similarity expressions
lack a kind-forming capacity — kinds have to be equivalence classes.

Concerning symmetry, Gleitman et al. (1996) present a series of studies show-
ing that Tversky’s results on similarity judgments are due to figureground effects
in presentation and argue that similarity is a genuinely symmetric relation. In
fact, Tversky himself already suggested that non-directional similarity state-
ments (North Korea and Red China are similar) are symmetric. Finally, transi-
tivity is obvious in the case of demonstratives. Consider the sentence Anna hat
so ein Auto und Berta hat so ein Auto. (’Anna has a car like this and Berta
has a car like this.’) where the two so-phrases share the same demonstration
target. This sentence clearly entails that Anna’s and Berta’s cars belong to the
same subkind of cars. For adjectives expressing similarity the situation is again
less clear. It might be possible that changing the respects of similarity, as in the
Jamaica/Cuba/Russia example, is licensed by adjectives (the sentence Jamaica
is similar to Cuba and Kuba is similar to Russia but Jamaica and Russia are
not similar appears acceptable in spite of different features of similarity).

Summing up, similarity as expressed by natural language demonstratives
(e.g., German so and English such) is in fact an equivalence relation whereas
similarity as expressed by adjectives (e.g., German ähnlich and English similar) is
not. This confirms the analysis that similarity demonstratives, but not similarity
adjectives, ad-hoc establish novel (sub-)kinds.
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6 Summary

In this paper, a representational framework was presented featuring multi-di-
mensional attribute spaces equipped with systems of convex predicates. This
framework facilitates the definition of a notion of similarity, or indiscernability,
as required in classification processes, which is suited for the interpretation of
demonstratives of manner, quality and degree in natural language. In (Umbach
in press), a similar approach was used for evaluative propositions.

The framework emerged out of a collaboration of Artificial Intelligence and
Natural Language Semantics. From an AI point of view it can be seen as a means
of representing (possibly incomplete) knowledge about a given domain. From a
semantic point of view it can be seen as extending referential semantics in order
to integrate conceptual aspects of meaning.
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