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Abstract   In this paper, a representational framework is presented featuring a qual-
itative notion of similarity. It is aimed at issues of natural language semantics, in 
particular the semantics of expressions of similarity and sameness and their role in 
comparison and ad-hoc kind formation. The framework makes use of attribute 
spaces, which are well-established in AI and also in some branches of natural lan-
guage semantics, e.g., frame-based approaches (Barcalou 1992). What distinguishes 
attribute spaces and representations as proposed in this paper is the idea of systems 
of predicates on attribute spaces corresponding to predicates on the domain. On the 
worldy side, a domain includes a set of relevant predicates talking about individuals. 
These predicates have counterparts on the representational side talking about points 
of an attribute space. Counterpart predicates are required to be consistent with their 
originals; more precisely, they have to agree in truth-value on the set of positive and 
negative exemplars more precisely, they have to agree in truth-value on the set of 
positive and negative exemplars thereby approximating the original predicates. 
Moreover, counterpart predicates will be assumed to have convex and open exten-
sions. This system facilitates a qualitative notion of similarity which is suited to 
account for the meaning of natural language similarity expressions and, further-
more, their role in comparison and ad-hoc kind formation.  
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1 Introduction 

In this paper, a representational framework is presented featuring a qualitative no-
tion of similarity. It is aimed at issues of natural language semantics, in particular 
the semantics of expressions of similarity and sameness and their role in comparison 
and ad-hoc kind formation.1 Starting point was the interpretation of such expres-
sions in German and English, for example so/such, ähnlich/similar, and 
gleich/same, which all denote similarity in some sense. It would be unsatisfactory, 
however, to treat similarity as a primitive predicate because semantic differences 
between individual similarity expressions would be obscured, for example, the fact 
that ähnlich/similar are gradable while so/such and gleich/same are not (see Um-
bach and Gust in print). Furthermore it would be difficult to establish the connection 
similarity expressed by scalar and non-scalar equative comparison constructions, as 
shown in (1). 
 

(1) a.   Anna is as tall as Berta.  scalar / adjectival 
 b.   Anna has a car like Berta’s. non-scalar / nominal 
 c.   Anna is dancing just like Berta.  non-scalar / verbal 

 
Finally, a primitive similarity predicate would leave no room to account for the 

observation that certain similarity expressions, in certain contexts, can be used to 
form ad-hoc kinds. German so as well as English such combined with nominal ex-
pressions may refer to kinds (or concepts) instead of individuals. In (2a,b), for ex-
ample, so ein Fahrzeug / such a vehicle does not refer to a particular vehicle but 
instead to an ad-hoc created kind of vehicles including the set of vehicles similar to 
the one the speaker points to. Umbach and Stolterfoht present experimental exi-
dence that features licensing ad-hoc kinds must be principally connected to con-
cepts, excluding factual and statistical properties (Umbach & Gust 2014, König & 
Umbach 2018, Umbach & Stolterfoht in prep.). Thus,  a complex notion of similar-
ity not only provides a detailed semantic interpretation of natural language similar-
ity expressions – it opens a window into mechanisms of concept formation.  

 
(2) (Speaker points to an oversized car that makes enormous noise:) 
 a. So ein Fahrzeug wird in den Innenstädten bald verboten sein. 
 b. Such a vehicle will soon be banned in the inner cities. 

 
The framework in this paper offers a way to spell out the notion of similarity in 

some detail without being forced to leave the well-established ground of referential 
semantics. The core idea is to make use of attribute spaces representing complex 
features of individuals, and to make use of predicates defined on such features 

 
1 The notion of kinds in linguistics is closely connected to the notion of concepts in psychology 

(Carlson 2010). Moreover, ad-hoc categories formed by linguistic expressions show core charac-
teristics of concepts (Barcalou 1983). We thus assume that kinds formed ad-hoc by similarity ex-
pressions closely correspond to concepts, see Umbach & Stolterfoht (in prep). 
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determining the granularity of representation. In accordance with referential seman-
tics we assume that natural language expressions refer to entities, or categories of 
entities, in the real world. However, access is only indirect, mediated by generalized 
measure functions mapping real world entities to points in attribute spaces (this is 
called a mediated reference theory in Färber, Svetashova and Harth, this volume). 
Similarity is a key concept in our framework because it provides a variable notion 
of identity / indistinguishability with respect to a representation: Individuals count 
as similar if their features in a particular attribute space, given a particular granular-
ity, cannot be distinguished. 

This system provides a powerful and flexible tool in the analysis of natural lan-
guage semantics facilitating detailed interpretations of similarity expressions (so, 
such, similar etc.). Beyond, and maybe even more relevant, this system offers the 
possibility to analyze linguistic ad-hoc kind formation constructions, for example, 
by so/such demonstratives and equative comparison as in (1) and (2). It is important 
to realize, however, that this system is basically a multidimensional generalization 
of degree semantics (e.g. Kennedy 1999) complemented by a method for varying 
granularity. From this point of view, our framework is anchored in referential se-
mantics just as much as degree semantics is. 

Attribute spaces are well-established methods of representation in AI2 and also 
in some branches of natural language semantics, e.g., in frame-based approaches 
(Barcalou 1992; Minsky 1975). What distinguishes attribute spaces and representa-
tions as proposed in this paper from classical frame-based approaches is that we 
focus on systems of predicates on points in attribute spaces in contrast to the points 
in these spaces themselves, thereby introducing a qualitative aspect, for instance in 
modelling comparison. This idea is connected to the idea of micro-theories (see, 
e.g., in Cyc3 or other ontology languages) which talk about small parts of the world 
covered, e.g., by a single concept like chair, vehicle, elephant, human, etc., but also 
about actions and events. We expect that such micro-theories provide some kind of 
prototypes or exemplars, positive and also negative ones. Maybe we just imaginate 
such exemplars. Here is a typical way how to introduce the concept of a physical 
object in a beginners lecture in experimental physics by imagination of a positive 
example:4 “Think of a red steel ball of ten centimeters diameter in front of you. It 
need not to be red, it need not to be made from steel, it need not have a diameter of 
ten centimeters and it need not be a ball.” This shows that even abstract concepts 
can be characterized by exemplars (real or imaginated) together with the specifica-
tion of relevant dimensions in an attribute space. 

This paper is structured in the following way:  In section 2 we develop a formal 
theory of representation making use of predicate systems over attribute spaces. Sec-
tion 3 gives a brief overview over the interpretation of natural language similarity 

 
2 Starting from Minsky’s frames (Minsky 1975) and feature structures, up to modern approaches 
based on description logics (for an overview see https://en.wikipedia.org/wiki/Description_logic). 
3 For micro-theories in Cyc see, e.g. ,  
https://pdfs.semanticscholar.org/4f28/6fdf9280449588b9d3781c9c897da28e0cff.pdf 
4 For an overview of the imagery debate see https://plato.stanford.edu/entries/mental-imagery/ 
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expressions and the role of similarity in ad-hoc kind formation and equative com-
parison. Since the focus of this paper is on formal characteristics of the representa-
tional framework, we will not go into linguistic details.5 In section 4 we develop a 
formal similarity concept based on methods provided in section 2.  Section 5 shows 
how to use granularity and hierarchies of representations in order to model grada-
bilty along non-scalar dimensions. 

2 Representations in multi-dimensional attribute spaces 

We start from the idea that natural language expressions refer to entities or catego-
ries (or even higher order structures, e.g., relations) of entities in the real world, but 
in an indirect way. Access to these entities or categories is mediated by a function 
we call generalized measure function, e.g., car1 ⇒ {horse_power: 100ps, weight: 
1680kg, color: green …}. This is related to what is called observables in physics: 6 
Such a function assigns observable attributes (elements of an attribute space) to en-
tities or classes of entities in the world.7 The referential power of language predi-
cates like car (their meaning in the world) can thus be approximated by classifiers. 
Such classifiers should be effectively computable characteristic functions of predi-
cates.8 They operate on attribute spaces (or higher order structures based on attribute 

 
5 Readers primarily interested in formal frameworks might skip section 3. Readers primarily inter-
ested in semantics might want to start with section 3 and eventually go back. 
6 There is a long-standing debate about the dichotomy of observables vs. theoretical terms in phi-
losophy, see https://plato.stanford.edu/entries/theoretical-terms-science/. We take a naive view 
here: observables are functions assigning values to entities in the world which can be determined 
by ‘simple’ measurements. Examples are temperature, length, width, height, color, position, etc., 
in contrast to values for energy (which in case of heat, for example, depends on temperature, mass 
and specific heat of the matter). 
7 Our approach is non-constructive since we do not construct representations, but instead have 
systems of constraints which representations must obey. Bechberger & Kühnberger (this volume) 
discuss approaches for learning feature space representations by multidimensional scaling. They 
optimize these representations by using artificial neural networks. From our point of view, they try 
to learn a feature space F and a measure function μ from similarity and dissimilarity judgments of 
subjects. In this case, µ maps stimuli (elements of a stimuli domain D) to points in F.  

Their approach is restricted such that all dimensions of F have a uniform structure. Essentially 
F is an euclidean vector space in their approach. There is no canonical interpretation of the dimen-
sions found, and therefore, no link to natural language expressions. In a second step, the goal is to 
find classifiers which approximate meaningful subclasses of the stimuli space, which may then 
lead to interpretations of the dimensions. Bechberger & Kühnberger discuss this as a quality meas-
ure suited in determining the number of dimensions of F. They generalize the approach to handle 
unseen stimuli. 
8 Classification problems are common in artificial intelligence, where classifiers are trained on 
huge example sets to be able to classify unseen examples without error. Analogous to our ap-
proach, the first step is to find a suitable representation of the real world problems which can be 
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spaces).9 Still, we can go back from predicates on points in attribute spaces to pred-
icates on the entities in the world via the inverse image of the generalized measure 
functions. 

  

Fig. 1. A domain of vehicles and a representation featuring positive and negative exemplars of 
small cars.  

On the worldy side, a domain includes a set of relevant predicates P talking about 
entities in the world. According to the notion of a representation in this paper, these 
predicates have counterparts on the representational side marked by a star (*) in Fig. 
1. Counterpart predicates are required to be consistent with their originals; more 
precisely, they have to agree in truth value on the set of positive and negative ex-
emplars of the original predicate. Moreover, counterpart predicates will be assumed 
to have convex extensions. As a consequence, they must be true on all points in the 
convex closure of the images of the positive exemplars (see diagram below). In 
addition, we stipulate that the extensions of counterpart predicates must be open10 
in some given topology on attribute spaces. This ensures that small changes in the 
representation (in the sense of the given topology) do not change the truth-values of 
these predicates. 

 
handled by the classification algorithm. Then the example cases have to be  translated into this 
representation in order for the classifier to be able to learn. 
9 We may want to restrict computational complexity of classifiers since there should be efficient 
algorithms for classification. We will pay with accuracy to get easy to classify areas within the 
attribute space. 
10 Open sets are sets without a border. Think of a ball in three-dimensional Euclidean space as 
something like a tomato: It has a crisp border. If we remove the border by peeling, it is unclear 
where the tomato ends. 
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Domains and representations 

We start the formalization of our approach by introducing domains and representa-
tions. For classifiers, given the truth-value true ∈ Ω, we get the extension in the 
attribute space by its inverse image of {true}, and we get its extension in the real 
world by applying the inverse image of the measure function.  However, given a 
language predicate like small in the context of cars, its reference will in general not 
be completely determined by a classifier small*car and by subsequently applying the 
inverse image of the measure function. An entity which has all the attributes of a 
small car may not be a small car, and an entity which is a small car may not have 
all the attributes we in general assign to cars. In this sense, classifiers approximate 
the denotation of language predicates. This approximation relation is subject to con-
sistency constraints: If we know that x is a small car and y is similar enough to x, 
we expect that y is a small car, too. What should ‘similar enough’ mean? In our 
approach, we can express this in terms of the attribute space: The attribute values 
must be similar enough.  

If the classifiers cannot discriminate between the representations (points in the 
attribute space) of two entities x and y, they must belong to the same concepts: If 
one is a small car, then the other must be a small car, too. In particular, this is the 
case if the representations in the attribute space are equal. Think of a situation where 
we measure size only with very low precision or specify color only by a few color 
values. If the above constraint is violated we should probably change our attribute 
space and/or our measure function, e.g., increase precision of measuring size and/or 
introduce a more fine-grained color specification. 

 Often we have additional structure on our attribute space, e.g., a (pre)order re-
lation. Assume that x and y are small cars, and z is in the car domain. The number 
of wheels are wx, wy, wz respectively; x, y, and z differ only in the number of wheels. 
Then, if wx ≤ wz ≤ wy we expect z to be a small car, too. If not, we again have an 
inconsistency in our representation. And again, we probably should change it. The 
mathematical foundation of this type of inconsistency is the theory of convex clo-
sures. The formal definition of a convex closure operator cl on a set X is the follow-
ing (see Korte et al. 1991): 
 
A function cl : ℘(X) → ℘(X) is a convex closure operator iff 

 it preserves the empty set  cl({}) = {} 
 it is extensive   A ⊆ cl(A) for all A ⊆ X 
 it is monotone   A ⊆ B → cl(A) ⊆ cl(B) 
 it is idempotent   cl(cl(A)) = cl(A) 
 the anti-exchange property holds x,y ∉ X, x ≠ y,  

      x ∈ cl(X ∪ {y}) → y ∉ cl(X ∪ {x}) 

In the two-dimensional Euclidean plane, we can visualize the effect of a convex 
closure operator. Suppose X is cl({a,b,c}). If x is in cl(X ∪ {y}), then y cannot be in 
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cl(X ∪ {x}). The anti-exchange property ensures convexity. In a two-dimensional 
Euclidean plane, this means that for any two points in X the connecting line must 
also be in X. 
 

Fig. 2. Convex closure and anti-exchange property in the Euclidean plane 

On a (partially) ordered set (M, ≤) we can define convex closure operators in a nat-
ural way. For A ⊆ M we define: 

 
 left closure:  cl←(A) = {x ∈ M | ∃ y ∈ A : x ≤ y} 
 right closure:  cl→(A) = {x ∈ M | ∃ y ∈ A : y ≤ x} 
 convex closure:  cl(A) = {x ∈ M | ∃ y,z ∈ A : y ≤ x ≤ z} 
 

To sum up: We approximate the meaning of natural language predicates by classi-
fiers and their inverse images by means of a generalized measure function. Addi-
tionally, we request that classifiers respect some consistency constraints: (i) they 
should classify known examples correctly, (ii) their extension (as a subset of the 
attribute space) should be convex according to a suitable convex closure operator 
and (iii) their extensions should be open in a suitable topology. The topology and 
the closure operator must be compatible: Closures of open sets must be open. 

First, we need a notation to refer to the entities we are talking about by a natural 
language predicate like small car: the set of entities (in the world) for which it makes 
sense to ask if they have car properties, that is, entities for which the attribute di-
mensions for cars make sense, e.g., number of wheels, horsepower, size, weight, 
color etc. We exclude entities for which it does not make sense to ask if they have 
car properties, e.g., single atoms, trees, hens etc.  

Next, we assume that we have clear cases: positive examples such as entities 
which are definitely cars, and negative examples such as entities for which the at-
tribute dimensions of cars make sense but which are definitely not cars, e.g., motor-
bikes. Concepts which are related and belong to the same micro-theory are collected 
as predicates over the same domain. Think of different types of cars, bikes, trikes 
etc. 

We assume that there is a universe U which includes all the entities in the world. 
We can start now formalizing our approach by defining a domain as a subset of the 
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universe U together with a set of predicates and non-overlapping sets of positive 
and negative examples for each predicate. 
 
Definition 1: Domain 

A domain 𝒟 is a quadruple  <D, _+ , _− , P> with: 

 D ⊆ U  a set of individuals / entities (called the carrier of the  
                                domain), 
 P = {p1, … pn}   a set of identifiers of predicates over D, 
 _

D
 : P ⟶ ℘ (D) the extension in D of a predicate11 denoted by index D12 

 _+ : P ⟶ ℘ (D)  a function which assigns a set of positive examples to   
                             each predicate (for _+(p) we write p+), 

 _− : P ⟶ ℘ (U)  a function which assigns a set of negative examples to  
                             each predicate13 (for _−(p) we write p−), 

 ∀p∈P : p
D

+ ∩ p
D

−  = ∅  ሺconsistency), 

 ∃q∈P ∀p∈P: p
D

+ ⊆ q
D

+ ∧  p
D

− ⊆ q
D

+ ∧  q
D

− ∩ D = ∅  (universal predicate). 

 

Fig. 3. A non-convex set in the two-dimensional plane and its convex closure.  

Representations and classifier systems 

We view the elements of D as entities to which we have only indirect access via a 
(generalized) measure function μ. The measure function μ constructs representa-
tions of the entities in D as points in an attribute space F, much like observables in 

 
11 In fact, we will often use characteristic functions in place of predicates. In the structures we are 
interested in, there is an isomorphism between ℘(D) and ΩD. We will not restrict ourselves  to a 
special type of logic (e.g. two-valued classical logic). We stipulate a logical system characterized 
by  a set of truth-values Ω.  Ω = {true, false} for classical logic, Ω = [0, 1] for fuzzy logic. 
12 We will drop the index D whenever it is clear which domain we are talking about. 
13 Positive examples must be in the domain, negative examples may be anywhere. A small mouse 
is a negative example for ‘big elephant’, but a small elephant is a more informative example. 
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physics. Attribute spaces are well-established representational structures.14 They 
generalize vector space approaches in allowing heterogeneous dimensions equipped 
with value sets of different scales (nominal, ordinal, interval, proportional, partially 
ordered etc.), where value sets may themselves be attribute spaces with multiple 
dimensions. 

An attribute space F is given by a set of attributes A = {a1...an}, such that for 
each ai in A there is a set of possible values Vai of ai. Elements of D are mapped to 
points in Va1 × … × Van , the carrier of the attribute space F. Think, for example, 
of number of wheels as an attribute with {1,2,3,4,5,6,…} as its value set, or horse-
power as an attribute with the positive real numbers as its value set.15 

A representation includes an attribute space F, a (generalized) measure function 
μ mapping elements of a domain into the attribute space, and a set of classification 
functions p* applying to points in the attribute space. In the case of the attribute 
number of wheels the measure function μ just has to count. In the case of the attribute 
horsepower a complex measurement procedure is required to determine the value 
of μ. The classification functions (short classifiers) serve as approximations16 of the 
predicates in P.17  Moreover, the extensions of the classifiers will be assumed to be 
open and convex. This means that F comes with a convex closure operator cl and 
p* must be true on cl(μ(p+)).18 Using the n-dimensional Euclidean space as an ex-
ample, the extensions of the classifiers must not have holes, notches or coves in the 
representation space F.  

 
Definition 2: Representation 

A representation ℱ = <<F, cl>, μ , _*, 𝒟> of a domain 𝒟 = <D, _+, _−, P> is 
given by  

 an attribute space F together with a closure operator cl and a compatible 
topology (we write F for <F, cl>  if we are not interested in the closure 
operator cl), 

 a measure function19 μ : D → F , 

 
14 Attribute spaces are related to the classical frame approaches (Minsky 1975). Other related ap-
proaches are feature structures which are widely used in linguistic formalisms (Carpenter 1992). 
15 Note that ordinal or metric dimensions as common in degree semantics correspond to one-di-
mensional attribute spaces in our approach.  
16 More precisely: p* ◦ μ approximates p. 
17 For every p∈P  there is a p*∈P* 
18 This includes all points in the convex closure of the images of the positive exemplars. For the 
concept of convexity in conceptual structures see Gärdenfors (2000). Intuitively, the convex clo-
sure of a subset X of F is the smallest convex subset of F containing X. 
19 In most cases, we do not expect to explicitly compute values of the measure function for entities 
in D. Almost no one will be able to compute the horse power of his car. To learn about the horse 
power of my car I would look-up the value in the data sheet. When you go to the doctor for a 
general health check-up the chance that she will take a measure stick to measure your height is 
very small. It might instead be like this: doctor: “How tall are you?”, patient: “As tall as you.” , 
doctor: “About 1.75?”,  patient: “Think so.” Nevertheless, it should at least in principle be possible 
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 a function _* : P → ΩF   
(we write p* for _*(p) and call them classifiers).20 

 
Representations are subject to three consistency constraints: 

 ∀p∈P the extension of p* must be open and convex in〈F, cl〉  
 ∀p∈P ∀x∈p+ : p*(μ(x)) = true 
 ∀p∈P ∀x∈p- ∩ D : p*(μ(x)) = false 

From this we get μ(pi
+) ∩ μ(pi

− ∩ D) = ∅. 
 

Fig. 4. Domains and representations 

 
As mentioned above, attribute spaces are familiar methods of representation. What 
distinguishes attribute spaces from the representations proposed in this paper is the 
idea of classifiers on attribute spaces. On the worldy side, a domain includes a set 
of relevant predicates p∈P. On the representational side, these predicates have coun-
terparts, namely classifiers p*∈P*. By P* we denote the set of all basic classifiers: 
P*={p*| p∈P}. These classification functions are required to be consistent with their 
corresponding predicates over D; more precisely, for the set of positive / negative 
exemplars the truth-values of the classification functions have to agree with the 
truth-values of the original predicates (see definition 2). 

Given a set of basic classifiers,21 we assume the possibility to construct derived 
classifiers by logical operations: For the logical conjunction this is unproblematic 

 
to determine the value for a given element in D. It is even possible to use of machine learning 
technics to learn suitable dimensions and values by analyzing similarity judgments of subjects (see 
footnote 7). 
20 where ΩF is the set of characteristic functions F→Ω. In addition, we expect that classification 
functions come with algorithmic methods to compute these functions. 
21 There is an interaction between the attribute space F and the measure function μ. While attribute 
spaces can provide highly structured representations, classifiers can be viewed as attributes with 
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(convex sets and open sets are closed under intersection). For the logical disjunction 
we have to apply the convex closure operator cl to the result. For negation this is 
not possible. Thus we do not allow to define complex classifiers by applying nega-
tion to elementary ones.22 We name the set of derived classifiers P̃*. 
 
Definition 3: Classifier systems 

Given a set of basic classifiers B over an attribute space F, we define a set of 
classifiers B̃ inductively (much like a topology): 

 B ⊆ B̃   we expect that elements of B are  
   convex and open, 

 X ∈ B̃ , Y ∈ B̃ → X ∩ Y ∈ B̃ intersections, 
 X ∈ B̃ , Y ∈ B̃ → cl ( X ∪ Y ) ∈ B̃ closures of unions. 
 

If F is (partially) ordered: 
 X ∈ B̃ → cl→(X) ∈ B̃ cl→(X) ={x∈F | ∃ y∈X : y ≤ x} right closures, 
 X ∈ B̃ → cl←(X) ∈ B̃ cl←(X) ={x∈F | ∃ y∈X : x ≤ y} left closures. 

It is important to mention that in general B̃ is not closed under complement. This 
means that we do not have negation: Complements of convex sets need not to be 
convex and complements of open sets need not to be open. We start with basic 
classifiers  B={p1*, …, pn*} and get P̃* as the corresponding system of classifiers. 

3 Similarity expressions in natural language    

In this section, a brief overview will be given of the challenges involved in the in-
terpretation of similarity expressions.  This section will not give a full description 
of the semantic phenomena – references will be given for details – but instead serve 
as a motivation for the specifics of the similarity framework presented in this paper.  

Similarity demonstratives 

The need for a framework that models similarity originated from the problem of 
how to interpret the German demonstrative so ('so'/'such'). It is a genuine 

 
values in Ω. It is possible to hide all the complex structure of a representation in the measure 
function by using  (p1*×…× pn*)◦μ as new measure function and Ωn as attribute space F. Of 
course that is not the idea of this approach. We will try to use ‘simple’ measure functions and 
meaningful attribute dimensions. 
22 In general, complements of concepts are not necessarily themselves concepts – a non-car is not 
a proper concept. 



12  

demonstrative expression, so we expect direct reference in the sense of Kaplan 
(1989). It does not, however, express identity as does, e.g., dies/this, and instead it 
refers to a set of entities which are in some sense similar to the target of the demon-
stration gesture (the entity the speaker points to).  If the speaker points to a car while 
uttering "So ein Auto hat Anna" ('Anna has a car like this'), Anna’s car is said to be, 
with respect to a particular set of features, indistinguishable from the car the speaker 
points to. This kind of demonstrative expressions is called similarity demonstratives 
in Umbach & Gust (2014), Gust & Umbach (2016), and demonstratives of manner, 
quality and degree in König & Umbach (2018). 

We follow Nunberg’s (1993, 2004) adaptation of the Kaplanian analysis, inter-
preting demonstratives as directly referential expressions, but at the same time dis-
missing the idea that the target of the demonstration is necessarily identical to the 
referent of the demonstrative. This allows for a straightforward interpretation of 
similarity demonstratives such that the target of the demonstration is the individual 
or event the speaker points to, and the referent of the demonstrative phrase is related 
to the target by similarity instead of identity. Similarity is then implemented by in-
distinguishability of points in attribute spaces (see section 4). This implementation 
of similarity is in fact close to the idea of contextual granularization suggested in 
Nunberg (2004): When restricting attention to a particular set of features, it may be 
the case that two entities can no longer be distinguished. It is important to note, 
however, that this idea requires a framework that distinguishes between a referential 
and a representational level – you cannot speak about indistinguishability without 
access to what could have been distinguished.   

Ad-hoc kinds 

According to the similarity analysis, demonstratives like German so and English 
such create classes of similar items, e.g. similar cars. There is some evidence that 
in the nominal and verbal case (though not in the adjectival case) these similarity 
classes constitute ad-hoc kinds. In a nut-shell, so/such phrases can be shown to be 
restricted to particular features of comparison. For example, the feature number of 
doors would be perfect when comparing cars but not when comparing mugs – mugs 
do not have doors, so the number of doors does not qualify as a feature of compar-
ison for mugs. But mugs as well as cars can be recently purchased and nevertheless 
being recently purchased does not qualify as a feature of comparison for neither 
cars nor mugs. This suggests that properties qualifying as features of comparison 
must not be accidental. 

There is experimental evidence that features of comparison are restricted to prop-
erties which are neither accidental nor evaluative (see König & Umbach 2018 and 
Umbach & Stolterfoht in prep.). This raises the question of how to characterize these 
properties, which is a prominent issue in the debate about concept formation in cog-
nitive psychology. Only recently has this debate been connected to the topic of 
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genericity in linguistics by Greenberg (2003) and Carlson (2010), and by the exper-
imental studies in Prasada & Dillingham (2006) and by Prasada et al. (2013), 
providing evidence that there are so-called principled connections between kinds 
and properties that an entity has, because it is the kind of thing it is. 

  There is an alternative analysis claiming that demonstratives like German so 
and English such are pro-kind expressions (see Anderson & Morzycki 2015, adapt-
ing Carlson's 1980 kind-referring analysis of such). The final results of the two ac-
counts are fairly close. However, unlike the pro-kind account, the similarity account 
not just postulates that so/such phrases denote kinds, but in addition shows how 
these kinds emerge, namely by similarity. 

Equative comparison 

Another phenomenon where similarity plays a significant role is equative compari-
son, including non-scalar as well as scalar cases, see (3a-c).23 In German, scalar as 
well as non-scalar equatives are uniformly constructed by so … wie where so is a 
correlative pronoun relating to the standard of comparison given in the wie clause: 
 

(3) a.   Anna ist so groß wie Berta.  scalar / adjectival 
  Anna is as tall as Berta 

 b.   Anna hat so ein Auto wie Berta.  non-scalar / nominal 
  Anna has a car like Berta's. 

 c.   Anna tanzt so wie Berta.    non-scalar / verbal 
  Anna is dancing just like Berta 
 
Given that the demonstrative so can in general be substituted by wie dies ('like this'), 
it suggests itself to analyze wie as expressing similarity as does so, though without 
a deictic component. This allows for a generalized account of equative comparison: 
The nominal equative in (3b) is interpreted such that Anna’s car is similar to Berta's 
car with respect to a set of contextually given features; the verbal case in (3c) is 
interpreted such that the event of Anna dancing is similar to the event of Berta 

 
23 It has been argued that (3a) and (3b,c) just differ in being one-dimensional as opposed to multi-
dimensional, and that even multi-dimensional comparison is scalar. There are, in fact, multi-di-
mensional adjectives like healthy that allow for comparatives:  A is more healthy than B. Sassoon 
(2013) suggests to interpret comparatives of multi-dimensional adjectives by quantification over 
dimensions in which the compared entities exceed the standard: A is more healthy than B iff the 
number of dimensions in which A exceeds the standard is greater than that of B exceeding the 
standard (for alternatives see the subsection on gradability below). 

This approach presupposes, however, that the individual dimensions are scalar, which is not gen-
erally the case, consider, e.g., color as a dimension in comparing cars or posture as a dimension in 
comparing dancing habits. Moreover, even though cars and dancing habits can be compared in 
equatives, forming comparatives is impossible. This is strong evidence that (3b,c) are genuinely 
non-scalar. 
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dancing; and the adjectival case in (3a)  is interpreted such that Anna is similar to 
Berta with respect to their height – note that the scalar equative in (3a) does not 
hinge on contextually given features of comparison but instead 'carries its dimen-
sion on its sleeves'.  

'Exactly' versus 'at-least' reading 

Scalar equatives like (3a) allow for two readings. On the exactly reading, Anna's 
height is (approximately) the same as Berta's height, while on the at-least reading 
Anna's height is greater than or equal to Berta's height. While both readings are 
attested in the data, standard degree semantics and the similarity analysis differ with 
respect to which reading is predicted to be primary. In standard degree semantics 
equatives are assumed to have an at-least interpretation as their meaning while the 
exactly reading is derived by scalar implicature. In the similarity analysis, on the 
other hand,  equatives (scalar as well as non-scalar) are interpreted such that their 
meaning is symmetric, since similarity is an equivalence relation – A ist so groß wie 
B  means that A is similar in height to B – thereby raising the question of how to 
account for the at-least reading. 

The question of which of the exactly and the at-least reading is basic has been 
the topic of a continuous debate when addressing numeral expressions. According 
to the classic analysis by Horn (1972), sentences containing numbers assert lower 
boundedness and may, depending on the context, implicate upper boundedness – 
Anna has three sheep asserts that she has at least three sheep and implicates, de-
pending on context, that she has at most three sheep. This analysis has been ques-
tioned, for example, by Kennedy (2013) who presents, among other things, scope 
effects that cannot be explained in the classic analysis. Surprisingly, this debate has 
not been extended to equative constructions, even though according to the classic 
analysis degree equatives assert at-least interpretations, as in the case of Horn’s 
analysis of numerals: Anna is as tall as Berta is true if  height(Anna) ≥ height(Berta) 
(see., e.g., Kennedy 1999). 

We assume that the semantics of scalar equatives is given by similarity even in 
contexts requiring an at-least reading, and we implement this idea by exploiting the 
granularity encoded in our framework. Consider the example in (4). In this context, 
Sophie tells the truth even if she is taller than Larissa. In general, if there is a thresh-
old given in the context, it appears irrelevant by how much it is exceeded.  

 
(4)  Sophie wants to join the police, which requires a certain minimum height. 

Her cousin Larissa has told their grandma that she has already been ac-
cepted by the police. That’s why grandma asks Sophie whether she is as 
tall as Larissa.  
Sophie replies: Ja, ich bin so groß wie Larissa / Yes, I’m as tall as Larissa. 
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In the case of at-least readings, classifiers applying to the standard of compari-
son, e.g., Larissa's height in (4), are mapped to their right closure.24 Thereby Sophie 
counts as similar in height to Larissa even if she is ten centimeters taller. Thus our 
account is "mildly ambiguous" – in particular contexts, closures involved in deter-
mining similarity are adjusted. It has to be noted, though, that this adjustment is licit 
only if the difference is moderate. But if, for example, Larissa is a six-year-old and 
Sophie is her mother, it would be absurd to assert that Sophie is as tall as Larissa 
(which is predicted to be true on the classical analysis of degree equatives). 

For negated scalar equatives the prominent reading is asymmetrical: The sen-
tence Anna ist nicht so groß wie Berta / Anna is not as tall as Berta. is preferably 
interpreted such that Anna is smaller than Berta. This asymmetry is not influenced 
by the existence of a contextual threshold and does not appear infelicitous in the 
case of major differences – Larissa is not as tall as Sophie would be acceptable even 
if Sophie is Larissa's mother. The preference for the asymmetric reading of negated 
scalar equatives can be explained by the fact that a disjunctive (symmetric) reading 
according to which Anna is either smaller or taller than Berta would not be convex 
any longer. Given that convexity plays a primary role in cognitive economy it is 
hardly surprising to find such effects in natural language semantics (see also Solt & 
Waldon 2019 on numerals under negation). 

Gradability 

Implementing similarity as indistinguishability (see the next section) suggests that 
it is a nongradable concept. This is plausible considering expressions like German 
so/wie and English such/like. On the other hand, the adjectives ähnlich and similar 
are gradable – Anna can be more similar to her father than to her mother. This points 
to the need for a gradable notion of similarity.  

Cognitive Science models of similarity usually start out either from a notion of 
distance in a geometrical space (e.g. Gärdenfors 2000) or from numbers of common 
and distinctive features (e.g. Tversky 1977). Both approaches facilitate a straight-
forward definition of the comparative: In geometric models similarity increases if 
distances decreases, and in feature based models similarity increases if the number 
of common features increases and that of distinctive features decreases. However, 
the positive form – the predicate similar – would require a threshold from where on 
two items count as similar, which would be hard to provide in a non ad-hoc fashion. 

In our system, the positive form is the primary one – two items are similar if 
indistinguishable with respect to a given representation (including dimensions of 
comparison and classifiers, see definition 2 and definition 4 and 5). The comparative 
will be defined making use of representations of different granularity: Two items a 

 
24 See the quasi exactly implementation of the at-least reading by right closure of classifiers in 
section 4. 
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and b are more similar than two items c and d in a representation ℱ  if and only if 
there is a less granular representation ℱ’ such that a and b are similar in ℱ’ while c 
and d are not (see definition 8 in section 5). Suppose, for example, that in represen-
tation ℱ neither a and b nor c and d are similar. If there is a less granular represen-
tation ℱ’ such that a and b are similar while c and d can still be distinguished, then 
a and b  must be closer in terms of properties than c and d. 

Defining a comparative notion more similar based on the positive form similar 
is reminiscent of the vague-predicate approach suggested by Klein (1980). In con-
trast to the standard degree-semantic approach where degrees are compared in in-
terpreting the comparative – Anna is taller than Berta is true if her degree of height 
exceeds that of Berta – in a Kleinian approach the comparative is modelled by var-
ying contexts, that is, varying thresholds for the positive predicate to apply: Anna is 
taller than Berta is true if there is a context such that Anna counts as tall while Berta 
does not.25 This way of interpreting the comparative is, first of all, consistent with 
cross-linguistic findings showing that the majority of languages express the com-
parative in terms of the positive. Moreover, it does not rely on the existence of a 
single scale of degrees.  

The definition of more similar suggested above gives us the means to interpret 
the comparative form of the adjective similar. But beyond that it allows a Kleinian 
style definition of comparatives for multi-dimensional adjectives like healthy and 
beautiful. Comparatives of multi-dimensional adjectives are usually interpreted us-
ing degree semantics, either by counting dimensions in which the threshold is ex-
ceeded (see Sassoon 2013), or by integrating dimensions such that the result forms 
an order, where integration may be context-dependent and also judge-dependent 
(see Solt 2016).  

The similarity framework puts us in the comfortable position of not having to 
treat all adjectives in the same way. Adjectives like tall and old, which clearly refer 
to a single ordinal or even metric scale, will be interpreted via a single dimension. 
In this case, similarity takes the role of specifying the granularity of this scale: Anna 
is taller than Berta is true if all points of the granule of Anna's height are greater 
than all points of the granule of Berta's height (in the case of overlapping the situa-
tion is more complex). Multi-dimensional adjectives like healthy and beautiful, on 
the other hand, will be interpreted by similarity to a prototype:26  Anna is healthy is 
true if Anna’s health is similar to the prototype. And Anna is more healthy than 
Berta is true if Anna’s health is more similar to the prototype than Berta’s health.  

 
25 Contexts have to be consistent with the order of individuals in the domain. 
26 Analogous to thresholds in a single dimension – context-dependent and maybe judge-dependent. 
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4 Indiscernability 

In order to realize that two entities in the world are different their representations 
must differ in some way. This means that they must be recognizably different. In 
our approach this means that there are classifiers which can discriminate them. The 
complementary situation is indistinguishability, which means that, on the represen-
tational level, we cannot discriminate them. In our approach, given a system of 
predicates P there are two reasons why we may not be able to distinguish two ele-
ments of D: 

 Two elements may lead to the same value of the function μ, i.e., the same 
point in the attribute space.  Then no classifier can discriminate between the 
two elements. 

 The two elements disagree on μ (so we see that they are different), but they 
agree on all classifiers in  P̃*. 

To account for these types of indistinguishability we borrow the term indiscernible 
from Rough Set Theory (Pawlak 1998): 

 
Definition 4: Indiscernible 

Given a representation ℱ = <F, μ , _* , <D, _+, _−, P>> we define: 
For x,y ∈F:  x ∼ℱ  y ≡  ∀q∈P̃* :  q(x) ⟷ q(y) 

 
where P̃* is the set of all derived classifiers. 
 
According to this definition, indiscernibility is relative to the classifiers in P̃* in a 
representation ℱ. The relation of indiscernibility talks about points in F. However, 
the similarity relation we are interested in talks about elements of the domain D. 
Therefore, we have to apply the measure function before checking indiscernability. 
This gives us a first simple similarity relation: 

 
Definition 5: Similar  

∀x,y ∈ D : sim(x, y,  ℱ)  ≡    μ(x) ∼ℱ μ(y) 
 
Obviously, definition 5 defines an equivalence relation on D and we get a partition 
of the domain. The indiscernibility relation provides attribute spaces with a level of 
granularity, facilitating comparison of attribute spaces of distinct granularity which 
are otherwise identical. Let [y] denote the equivalence class (similarity class) of y : 
[y] = {x | x ∼ℱ y }. In Rough Set theory, such equivalence classes are called granules. 
 
There is a problem with this definition of similarity: The similarity classes in the 
attribute space may not be convex, as the following example shows. Think of case 
(3a) Anna ist so groß wie Berta ('Anna is as tall as Berta.'). Assume that we have a 
dimension of height (measured in meter) in the attribute space and classifiers which 
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specify height with some granularity depending on the measured value: A height of 
1.80 is given by some value between 1.78 and 1.82, while a height of 1.81 is given 
by some value between 1.806 and 1.814, and so on. Therefore, we may not be able 
to discriminate between 1.80 and 1.815: both belong to the same granule [1.80]. 
Nevertheless, we can discriminate between 1.80 and 1.81 since we have a classifier 
[1.81] giving true on 1.81 and false on 1.80. Therefore, the granule of Berta’s height 
([y] in Fig. 5, which is equal to [1.80]) may be not convex because [1.81] forms a 
hole. This results in the following situation: If Berta’s height is 1.80, then Anna’s 
height may be 1.80 or 1.815 but not 1.81 in order for the sentence to be true (as 
demonstrated in Fig.5). This is counterintuitive.  
 

Fig. 5. Granules with holes 

We can solve this problem by introducing a new parameter in the definition of the 
similarity relation: similarity relative to a point of reference. This point of reference 
determines the granules to be selected. 
 
Definition 6: Similarity relative to a point of reference 

Given a representation ℱ = <<F, cl> , μ, _*, <D, _+, _– , P >> , we can define a 
similarity relation relative to a point of reference r in two different ways: 

   ∀x, y ∈ F : x ~ℱr y  
 (a) iff ∀q ∈ P̃* : q(r) → q(x) ∧ q(y) 

 (b) iff ∀q ∈ P̃* : q(r) → (q(x) ↔ q(y)) 
 
Definition 6a means that principal filters27 of x and y in P̃* contain the principal 
filter of r. In contrast, definition 6b means that elements of the principal filter of r 
in P̃* cannot discriminate between x and y.  It is easy to see that (a) ⇒ (b), but not 
(b) ⇒ (a).  

For an intuitive insight into the functionality of this type of similarity relation, 
have a look at the following Venn diagrams: 

 
 

 
27 The principal filter of x is {q∈ P̃* | q(x)}. 
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Fig. 6. If dashed sets occur in P̃*, x and y cannot be similar 

Assume that there are four classifiers in P̃* :  small*, big*, normal* (concerning 
size), and heavy* (concerning weight). Table 1 shows some possible classifications 
of x, y, and r. These possibilities correspond to the dashed sets in Fig. 6.  The last 
two columns show the truth-values of the two similarity relations (a) and (b) in def-
inition 6 for the different cases. All the other cases can be handled by symmetry; 
only heavy* varies. The interesting case is line (2) since the two similarity relations 
differ: If y is small but r and x are not, and x is big but r and y are not, and x and y 
are normal but r is not, and r is heavy but x and y are not, then similarity of x and y 
with respect to the reference point r is true according to definition 6b but false ac-
cording to definition 6a. Intuitively, if the properties of the reference point r differ 
substantially from the properties of x and y then definition 6a gives false while 6b 
gives true. We consider definition 6a more plausible than 6b. 
 

  small* big* normal* heavy* x ~ℱr y 

  r x y r x y r x y r x y (a)  (b) 

(1)  ‐ ‐ +  ‐ + ‐  ‐ + +  ‐ * *  true true 

(2)  ‐ ‐ +  ‐ + ‐  ‐ + +  + ‐ ‐  false true 

(3)  ‐ ‐ +  ‐ + ‐  ‐ + +  + + ‐  false false 

(4)  ‐ ‐ +  ‐ + ‐  ‐ + +  + ‐ +  false false 

(5)  ‐ ‐ +  ‐ + ‐  ‐ + +  + + +  true true 

Table 1. Similarity of two  points x and y in the attribute space with respect to a reference point r 
depending on the possible extensions of the predicates small*, big*, normal*, and heavy*.  
The cell [small*, (1)], for example, indicates that small*(r) is false, small*(x) is false and small*(y) 
is true. The cell [heavy*, (1)] indicates that heavy*(r) is false, heavy*(x) is either true or false, and 
heavy*(y) is also either true or false. 
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For given ℱ and r the relation x ~ℱr y is a (kind of local) equivalence relation. If we 
switch the reference r, the classes will obviously change. If we choose one of the 
arguments as point of reference, we get an asymmetric similarity relation: In general 
x ~ℱy y will be different from y ~ℱx x because the point of reference changes. 

 
Definition 7:  Similarity classes 

For given ℱ and r we define the similarity class of r as 
(a) [r]ℱ = {x | ∀q ∈ P̃* : q(r) → q(x) }  
 

For [r]ℱ we borrow the term granule from Rough Set theory. Again we can use the 
inverse image of the measure function to define similarity relations on the domain. 
For a, b ∈ D we define two different similarity relations. The one in (b) makes use 
of a point of reference r that is independent of either a or b, whereas in (c) the point 
of reference is identical to the second argument: 

(b) simr (a, b, ℱ)  iff   μ(a)  ~ℱr μ(b) (+transitive, +symmetric, -reflexive) 
(c) sim’(a, b, ℱ)  iff   μ(a)  ~ℱb μ(b) (-transitive, -symmetric, +reflexive)28 
 

If we again look at our example (3a) Anna ist so groß wie Berta ('Anna is as tall as 
Berta.') we see that the granules depend on the point of reference r (Fig.7). If we 
use sim’  from definition (7c), there are two possible situations. In the first situation, 
we get the information that the height of Berta is 1.80. Since Berta provides the 
reference point (definition 7c) the relevant granule is [1.80]. The height of Anna can 
be an arbitrary value in this granule to make the statement true. It maybe 1.80 or 
1.81 – we simply cannot discriminate between both cases because the granule [1.80] 
is convex (no holes). In the second situation, we get the information that the height 
of Berta is 1.81. Now the relevant granule is [1.81] and not [1.80] even though 1.81 
may be an element of [1.80]. The height of Anna is restricted to the relevant granule: 
1.80 is not a possible value any longer, it falsifies the statement. Although it seems 
that there is a hole in [1.80] in the second case, in both cases, the relevant granule 
is convex. 
 

Fig. 7. The effect of holes  

 
28 sim’ uses the second argument as point of reference. 



21 

(A)symmetry of similarity  

The notion of similarity relative to a reference point is reminiscent of the question 
of whether the predicate similar is symmetrical addressed by Tversky (1977) and 
also Gleitman et al. (1996).  

Tversky’s seminal paper on feature-based similarity starts with empirical obser-
vations indicating problems of the then predominant geometric notion of similarity 
and the basic axioms of metric distance:29 (i) minimality is problematic in view of 
results concerning the identification probability for identical stimuli, (ii) symmetry 
is apparently false – the judged similarity of North Korea to Red China exceeds the 
judged similarity of Red China to North Korea – and (iii) triangle inequality is 
hardly compelling – Jamaica is similar to Cuba (geographical proximity) and Cuba 
is similar to Russia (political affinity) but Jamaica and Russia are not similar at all. 

However, a closer look reveals that these findings are not generally valid. Before 
dismissing transitivity of the similarity relation on the basis of the Ja-
maica/Cuba/Russia example, one should consider the role of switching features 
within the two comparison steps.30 And before dismissing symmetry, which is fre-
quently done in the Cognitive Science literature, one should consider the study in  
Gleitman et al. (1996) and, first of all, Tversky’s original study.  

In Tversky’s study, the linguistic presentation was directional (North Korea is 
similar to Red China), and he himself argues that the asymmetry finding hinges on 
the directional way of presentation. If the task is to assess the degree to which A is 
similar to B, then features of A may weigh more heavily than those of B.31, 32 But if 
the task is to assess the degree to which A and B are similar to each other, weights 
are expected to be equal and similarity judgements are symmetric. In Gleitman et 
al. (1996) the influence of directional vs. nondirectional presentation is experimen-
tally examined for a number of predicates that are intuitively thought to be symmet-
rical including similar, equal and identical. The authors find that the way of presen-
tation is decisive for the (a)symmetry in the interpretation of these predicates, even 
if the nouns they are combined with nonsense nouns.  

Tversky as well as Gleitman et al. attribute the asymmetry effects triggered by 
directional presentation to the difference between Figure and Ground. The same 
idea is found in our second definition of relative similarity (definition 7c), where 
the second argument takes the role of the Ground in determining the relevant gran-
ule.  

 
29 A metric distance function δ has to comply with  (i)  minimality: δ(a,b) ≥ δ(a,a) = 0,  (ii) sym-
metry: δ(a,b) = δ(b,a) and (iii) triangle inequality:  δ(a,b) + δ(b,c) ≥ δ(a,c). 
30 sim’ (definition 7c) is in fact intransitive due to using the second argument as point of reference. 
31 In Tversky's contrast model a function S takes weighted sums of the feature sets A and B of 
objects a and b to an interval scale such that sim(a,b) ≤ sim(c,d) iff S(a,b) ≤ S(c,d), where S(a,b) = 
θf(A∩B) – αf(A-B) – βf(B-A), α, β, θ denote weighting functions and f denotes a nonnegative scale. 
32 There is also the issue of which features are activated in the first place. In a directional presen-
tation the subject will determine which features are relevant in comparison. 
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'Exacly' reading versus 'at-least' reading 

As shown in section 3, scalar equatives may have two readings: an exactly reading 
and an at-least reading – Anna is as tall as Berta may be interpreted such that 
Anna’s height is the same as Berta’s height or such that Anna’s height exceeds 
Berta’s height. We assume that the semantics of scalar equatives is uniformly given 
by similarity even in contexts requiring an at-least reading, and we implement this 
idea by exploiting the granularity provided by closures on classifier systems.  

The exactly reading of equatives is accounted for by the granules defined by the 
available classifiers and the reference point μ(Berta). μ(Anna) must be in the granule 
of μ(Berta). To account for the at-least reading we need a transformation of classi-
fiers such that all degrees above a certain point x count as similar.33 Formally, we 
define a mapping from the classifier set P̃* to a subset P̃x* such that every p* in P̃* 
that classifies a member of cl→([x]ℱ) as true is mapped to its right closure while the 
others stay unchanged. Fig. 8 shows such a mapping: All classifiers left to [r] stay 
unchanged, while all classifiers to the right of [r] will be mapped to [r]. If the clas-
sifier extensions overlap, the situation may be quite complex. The right closure of 
[r] handles the general case. This procedure makes it possible to derive the at-least 
reading from the exactly reading by solely adapting classifiers. We call it a quasi-
exactly implementation of the at-least reading: 
 

Quasi-exactly implementation of the at-least reading by right closure of  
classifiers: 
P̃r*= {pr* | for p*∈P̃* if p* ∩ cl→([r]ℱ) ≠ ∅ then pr* = cl→(cl(p* ∪ [r]ℱ))  

else pr * = p*} 
 

Fig. 8. Quasi-exactly implementation, one dimension 

Although we get an at-least reading, the result still defines an equivalence class:34 
If we select a granule by a point of reference, every element in the granule is 

 
33 If we have a simple interval scale, we can model the at-least reading directly by the order of the 
attribute values. If we want to model granularity in addition, it becomes more complex since gran-
ules may overlap. If the scale is weaker or multiple dimensions are involved, comparison becomes 
even more complex. Our approach provides a uniform framework for all these cases. 
34 Since we have to select the granule first, it is a kind of ‘local’ equivalence class. 
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equivalent to every other element in the granule. This approach can handle multi-
dimensional cases, too. Assume that we are talking about the size of tables repre-
senting tables by dimensions length and width, and we use the classical convex clo-
sure of the Euclidean two-dimensional space. For non-overlapping classifiers the 
following two situation may occur (Fig. 9a+b). If the extension of a classifier p* is 
outside cl→([r]), then p* stays unchanged. If it is inside, then p* will be mapped to 
cl→([r]), analogous to the one-dimensional case. The general case with overlapping 
classifiers is again covered by the formula in Fig. 8. 
 

Fig. 9a. Quasi-exactly interpretation, two dimensions, p* ∩ cl→([r]ℱ) = ∅  

Fig. 9b. Quasi-exactly interpretation, two dimensions, p* ∩ cl→([r]ℱ) ≠ ∅ 

It is essential in our approach that the exactly interpretation is the primary one and 
is specified by the granularity  given by the (contextually determined) classifier 
system P̃*. The at-least interpretation is derived by applying a transformation to the 
classifier system P̃* depending on the reference element r. 

5 Granularity of representations and gradability of similarity 

As stated in section 3, granularity of representations provides a notion of more sim-
ilar serving in the interpretation of the comparative form of the adjective similar. 
More importantly, the notion of more similar is exploited in the interpretation of 
multi-dimensional adjectives in general – positive as well as comparative forms. 
Anna is healthy is true if Anna’s health is similar to a (contextually determined) 
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healthy prototype. Anna is more healthy than Berta is true if Anna's health is more 
similar to the prototype than Berta’s health.  

The core of the formalism are sets of representations equipped with a preorder 
structure (transitive, reflexive, but maybe not antisymmetric). This preorder imple-
ments a concept of granularity and granularity change. It will be used to construct 
a predicate more_similar based on a similarity relation defined by indiscernibility. 
For two representations ℱ and ℱ’ we can ask whether one is more fine-grained than 
the other, that is, whether there are entities that can be distinguished in one repre-
sentation but not in the other. Distinguishability is the opposite of indiscernibility 
and depends on the attribute spaces and the available classifiers. Therefore, these 
parameters determine the granularity of representations. We will introduce a reflex-
ive and transitive relation on representations (a preorder), which relates granularity 
levels.  
 
Definition 8: Granularity of representations 

Given two representations 
ℱ =  <F, μ, _* , 𝒟>       with  𝒟 = <D, _+, _−, P> 
ℱ’ = <F', μ', _*' , 𝒟' >  with 𝒟’ = <D', _+', _−', P'> 

 
we define: 

ℱ’ is at least as coarse as ℱ,  ℱ’ ≥ ℱ  iff  there is a function f such that 
(a)    the following diagram commutes:  

(b)   ∀x, y ∈ F : x ∼ℱ y  → f(x) ∼ℱ’ f(y)  
 
This definition states that what is indiscernible in the finer representation cannot be 
discriminated in the coarser representation. The strict version ℱ’ is coarser than ℱ, 
ℱ’ > ℱ, can be defined by the non-strict one: 
 

 ℱ’ > ℱ iff ℱ’ ≥ ℱ and not ℱ ≥ ℱ’  
 
What we need now is a specification of a relevant set of representations ℋ. The 
coarser relation then turns ℋ into a preorder.  We call such a structure a hierarchy  
of representations. What is missing to get a partial order from a preorder is the anti-
symmetry axiom:  from ℱ ≥ ℱ’ and ℱ’ ≥ ℱ we cannot conclude that ℱ = ℱ’. We 
may have different possibilities to get the same structure of granules. These hierar-
chies are related to the concept of context (van Rooij 2011).  
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Definition 9: Hierarchy of representations 
 

A hierarchy  ℋ  is a set of representations such that for any two elements 
  ℱ1/2 = <<F1/2, cl1/2>, μ1/2 ,  _*1/2, <D1/2, _+

1/2, _ –1/2 , P1/2>> ∈ ℋ 
we postulate the following constraints:35 

 consistency: ∀p∈P1∩P2 : (p+1×p– 1) ∩ (p– 2×p+2) = ∅ 
Elements of p+ and p– cannot change roles in different domains. 
 

 discriminative power: ∀p∈P1∩P2: (p+1×p– 1) ∩ (D2×D2) ≠ ∅ → p– 2×p+2 ≠ ∅ 
If a domain contains a discriminating pair of another domain for a shared 
predicate identifier, it must itself contain a discriminating pair.36 
 

 connectedness:  
∃ ℱ = <<F, cl>, μ , _*, <D, _+, _– , P>> ∈ℋ: D1⊆D ∧ D2 ⊆D ∧ P1⊆P ∧ P2⊆P 
 
and there are continues closure preserving functions f1/2: F → F1/2  
with μ1/2 =  f1/2 ◦ μ. 
For any two domains there is an enclosing domain. 

 
 

These constraints can be visualized by the following Venn-diagrams: 
 

a)  the consistency constraint rules out cases 
like this: if y is a big elephant and x is a small 
(not big) one, then x cannot be a big animal if 
y is a small (not big) one. 
Fig. 10.  
    

 
 

 

b) discriminative power: If there are big and small elephants there must be big and small animals, 
too, because animals are different in size: We have big and small elephants which are animals.  

 
35 (a) and (b) are adaptations of the context constraints in (van Rooij 2011: Definition 1). 
36 If we have big and small elephants and view them as animals, then there should be big and small 
animals, too. Either there are small animals like mice or, if all animals have the size of elephants, 
then small elephants must be small animals, too. See the Venn-diagram in Fig 11 and 12. 
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b1. If we collect elephants and mice in one 
animal domain, then a mouse (big or not) is a 
negative example for big animals. Thus we 
have a discriminating pair for big animals.  
Fig. 11.  

 

b2. If we collect only big animals in one animal 
domain, say elephants, hippos, and rhinocer-
oses, then any discriminating pair for these 
species is also discriminative for big animals.  
Fig. 12.  

 

 

c) connectedness: For any two domains 
there must be a super domain containing both 
(upward directed). 
Fig. 13.    

 
 
In the remainder of this section we assume that there is a contextually given hierar-
chy of representations ℋ. Our approach is non-constructive in the following aspect: 
We do not construct representations and hierarchies, but instead have systems of 
constraints which hierarchies must obey. The instantiations must be given by, e.g., 
the situation of the utterance. 

 
We will now demonstrate how to define a general relation more_sim(a, b, c, d, ℱ) 
based on our similarity relation sim and the preorder on representations. 
more_sim(a, b, c, d, ℱ) is intended to be true if a is more similar to b than c is to d  
with respect to a representation ℱ. 

 
Definition 10: More similar 

Given a hierarchy ℋ,  a similarity relation37 sim, and a representation ℱ ∈ ℋ,  
we define 
 more_sim(a, b, c, d, ℱ) iff 
 (a) ∃ ℱ’ ∈ ℋ :  ℱ’ ≥ ℱ ∧ sim(a, b, ℱ’) ∧ ¬ sim(c, d, ℱ’) 
 (b) ∀ ℱ’ ∈ ℋ : ℱ’  ≥ ℱ → (sim(c, d, ℱ’) → sim(a, b, ℱ’)) 

 

 
37 We discussed different similarity relations (see section 4). In this definition, we can use any of 
these. 
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The widely used version more_sim(a, b, c, ℱ) in the sense that a is more similar to 
b than c is similar to b can be defined straightforwardly by: 

more_sim(a, b, c, ℱ) ≡  more_sim(a, b, c, b, ℱ) 
 

If a is more similar to b than c to d in a given representation ℱ, it must be possible 
to discriminate between c and d. Otherwise, because c and d are maximal similar, a 
and b cannot be more similar than c and d. If we can discriminate between c and d 
in ℱ, then we can discriminate between c and d in every finer representation but 
maybe not in every coarser one. If we can find a representation ℱ’ (maybe coarser 
than ℱ), such that we can discriminate between c and d but not between a and b 
(definition 10a), we are almost done. It remains to exclude contradictions, that is, 
representations in which we can discriminate between a and b but not between c 
and d (this is excluded by definition 10b). 

  
The following diagrams show example hierarchies of representations talking about 
color and size of objects (each circle stands for a representation): 
 

Fig. 14. Hierarchy of representations, example 1   

Representations which are higher in the hierarchy are coarser than lower ones. On 
the left branch we introduce a dimension color and a classifier system based on 
{yellow*, light-blue*, blue*} which can classify colors by convex subsets of a 
(three-dimensional) color space. On the right branch, we introduce a dimension size 
with a corresponding classifier system {small*, big*, huge*}. The bottom 
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representation integrates the left branch and the right branch (definition 9c). Again, 
the size dimension need not to be a simple proportional scale. It can itself be a three-
dimensional vector space with sub-dimensions length, width, and height.  

According to the definition 10a, the more_sim relation will be inherited from top 
to bottom along the coarser relation. In the circles, we see the extensions of the 
corresponding P̃* elements. Next to the circles we see the statements about 
more_sim which are true in these representations. These statements depend not only 
on the representation they are attached to, but on the whole upper structure (the 
filter) of the representation. If we look at the circle at the bottom ℱc+s, we see that 
we inherit two statements, both from the left branch: 

 more_sim(y, z, x, ℱc+s)  and more_sim(z, y, x, ℱc+s). 
 

From the right branch, we inherit nothing because the classifier system is too weak. 
Representations may inherit inconsistent information from different paths which 
rule out some of the statements (by definition 10b). We can see this when we add 
more powerful classifiers to the right branch, see Fig. 15: 

 

 

Fig. 15. Hierarchy of representations, example 2  

The two heavily bordered circles (ℱL and ℱR) are alternatives which have different 
effects on the more fine-grained representations (below). The representation ℱs (cir-
cle below ℱL and ℱR) inherits more_sim statements though some are ruled out by 
the consistency constraint (definition 10b). In the bottom circle ℱc+s all statements 
are ruled out by the consistency constraints if both ℱL and ℱR are present in ℋ. In 
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ℱc+s, more_sim(z, y, x, ℱc+s) would be true (z is more similar to y than x is)  according 
to color because of  ℱc

’’and definition 10a. In this case, we cannot discriminate be-
tween z and y, but we can discriminate between x and y. According to the existential 
quantifier in definition 10a, this is propagated downwards. On the other side, in ℱR 
we cannot discriminate between x and y. According to the definition 10b and the 
universal quantification we should not be able to discriminate between z and y in 
this representation, but we are. Therefore, we get a contradiction. 

Since in a natural language utterance the hierarchy of representations is not ex-
plicitly expressed, we can interpret the meaning of an utterance like A is more sim-
ilar to B than C only as constraint on the relevant hierarchy of representations. 

 

6 Conclusion 

We presented a framework introducing a non-metric and qualitative concept of sim-
ilarity suitable for the interpretation of similarity in natural language.  

The basic idea is to "measure" properties of individuals with the help of multi-
dimensional attribute spaces representing relevant features of comparison (thus gen-
eralizing the idea of degree semantics). In our framework, attribute spaces are com-
plemented by classifiers which are predicates on points in attribute spaces approxi-
mating domain predicates; this is what we define as a representation. Individuals 
count as similar with respect to a particular representation if their values are indis-
tinguishable.  

In our framework, the granularity of the similarity relation may vary due to dif-
ferent dimensions of comparison and classifier systems. This leads to sets of repre-
sentations forming hierarchies of different granularity levels, where the order on 
representations facilitates a Kleinian style notion of more similar.  

This system provides a powerful and flexible tool to capture the meaning of nat-
ural language similarity expressions and account for the role of similarity in ad-hoc 
kind formation as well as equative comparison. Future work will explore its capac-
ity in, e.g., multi-dimensional comparison of adjectival, nominal and verbal proper-
ties. The general idea of our approach is to reconstruct comparison in natural lan-
guage in a qualitative way, with the help of different levels of granularity imposed 
by constraints on systems of classifiers. 
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